\[\begin{cases} f(x)= (x^{1958} + x^{1957} +2)^{1959} = a_0 + a_1 x +... + a_nx^{n} \\ A = a_0 -\dfrac{a_1}{2} - \dfrac{a_2}{2} + a_3 - \dfrac {a_4}{2} - \dfrac {a_5}{2} + a_6 -... \end{cases} \]

For \(A\) as defined above, find \(2A+3\).

×

Problem Loading...

Note Loading...

Set Loading...