An Olympiad Inequality Problem

Algebra Level 5

Let \(a\), \(b\) and \(c\) be positive real numbers satisfying \(abc=1\). Find the largest real number \(N\) satisfying the inequality

\[\large \frac{(a+b)(b+c)(c+a)}{a+b+c-1} \geq N\]

×

Problem Loading...

Note Loading...

Set Loading...