\[ \large \displaystyle\int _{ 0 }^{ 1 }{ \left\{ \dfrac { 1 }{ x } \right\} \dfrac { x }{ 1-x } \, dx=A\gamma } +B\]

The equation above holds true for integers \(A\) and \(B\). Find \(A+B\).

**Notations**:

\( \{ \cdot \} \) denotes the fractional part function.

\( \gamma\) denotes the Euler-Mascheroni constant, \(\gamma \approx 0.5772 \).

×

Problem Loading...

Note Loading...

Set Loading...