Another inequality

Algebra Level 4

a+1a+b+1b+c+1cS(a+b+c) \large \sqrt{a + \dfrac{1}{a} } + \sqrt{b+ \dfrac{1}{b}} + \sqrt{c + \dfrac{1}{c}} \geq S (\sqrt{a} + \sqrt{b} + \sqrt{c})

Let a,ba,b and cc be positive numbers satisfying ab+bc+ac=1ab+bc+ac=1. Find the largest value of SS for the inequality above

×

Problem Loading...

Note Loading...

Set Loading...