Forgot password? New user? Sign up

Existing user? Log in

$\large \sqrt{a + \dfrac{1}{a} } + \sqrt{b+ \dfrac{1}{b}} + \sqrt{c + \dfrac{1}{c}} \geq S (\sqrt{a} + \sqrt{b} + \sqrt{c})$

Let $a,b$ and $c$ be positive numbers satisfying $ab+bc+ac=1$. Find the largest value of $S$ for the inequality above

Problem Loading...

Note Loading...

Set Loading...