33 ants are placed on a pole of length \(\SI{1.0}{\meter}.\) They each have negligible length, and they each crawl with a velocity of \(\SI[per-mode=symbol]{1}{\centi\meter\per\second}.\) If two ants meet head on, they both turn around and immediately continue crawling.

If an ant reaches either end of the pole, the ant will drop off the pole. What is the longest possible time (in seconds) until *all* the ants drop off the pole?

×

Problem Loading...

Note Loading...

Set Loading...