Forgot password? New user? Sign up
Existing user? Log in
x0.10.010.0010.00010.00001⌊x⌋00000 \boxed{\begin{array}{c|r:r:r:r:r} x & 0.1 & 0.01& 0.001& 0.0001& 0.00001\\ \hline \lfloor x \rfloor & 0 & 0 & 0 & 0 & 0 \end{array}} x⌊x⌋0.100.0100.00100.000100.000010
By looking at the table above, is it true that as xxx approaches 0, then ⌊x⌋\lfloor x \rfloor ⌊x⌋ approaches 0 as well? That is, is limx→0⌊x⌋=0 \displaystyle \lim_{x\to0} \lfloor x\rfloor = 0 x→0lim⌊x⌋=0 correct?
Notation: ⌊⋅⌋ \lfloor \cdot \rfloor ⌊⋅⌋ denotes the floor function.
Problem Loading...
Note Loading...
Set Loading...