Are you game for gamma?

\(If\quad { (1+x) }^{ n }={ C }_{ 0 }+{ C }_{ 1 }{ x }+{ C }_{ 2 }{ x }^{ 2 }+{ C }_{ 3 }{ x }^{ 3 }+...+{ C }_{ n }{ x }^{ n },\quad then\quad the\quad value\quad of\quad \\ \frac { { C }_{ 0 } }{ n } -\frac { { C }_{ 1 } }{ n+1 } +\frac { { C }_{ 2 } }{ n+2 } -.....+{ (-1) }^{ n }\frac { { C }_{ n } }{ 2n } =\frac { \Gamma (x)\Gamma (y) }{ \Gamma (z) } .\\ Find\quad (z-x-y)2{n}^{2}\)

×

Problem Loading...

Note Loading...

Set Loading...