Forgot password? New user? Sign up
Existing user? Log in
an=1+6(n−1)bn=1+21(n−1)cn=202+102(n−1)\begin{aligned} a_n&=1+6(n-1) \\ b_n&=1+21(n-1) \\ c_n&=202+102(n-1) \end{aligned} anbncn=1+6(n−1)=1+21(n−1)=202+102(n−1)
Given the above, what is the value of
12!+13!+a14!+b15!+c16!+a27!+b28!+c29!+a310!+b311!+c312!+⋯ ?\displaystyle \frac 1{2!}+\frac 1{3!}+\frac {a_1}{4!}+\frac {b_1}{5!}+\frac {c_1}{6!}+\frac {a_2}{7!}+\frac {b_2}{8!}+\frac {c_2}{9!}+\frac {a_3}{10!}+\frac {b_3}{11!}+\frac {c_3}{12!}+\cdots\, ?2!1+3!1+4!a1+5!b1+6!c1+7!a2+8!b2+9!c2+10!a3+11!b3+12!c3+⋯?
Problem Loading...
Note Loading...
Set Loading...