Forgot password? New user? Sign up

Existing user? Log in

$\large \displaystyle I= \int^{1}_{0} \dfrac { \tan^{-1}(\sqrt{2+x^2})}{(1+x^2)\sqrt{2+x^2}} \,dx$

Find the value of $\lfloor{1000I}\rfloor$.

Notation: $\lfloor{\cdot}\rfloor$ denotes the floor function (greatest integer function).

Problem Loading...

Note Loading...

Set Loading...