\[\large \displaystyle I= \int^{1}_{0} \dfrac { \tan^{-1}(\sqrt{2+x^2})}{(1+x^2)\sqrt{2+x^2}} \,dx \]

Find the value of \(\lfloor{1000I}\rfloor\).

**Notation:** \(\lfloor{\cdot}\rfloor\) denotes the floor function (greatest integer function).

×

Problem Loading...

Note Loading...

Set Loading...