\[ \sqrt{1-2015x} + \sqrt{1+2015x} = \dfrac1{\sqrt{x+1}} + \sqrt{1+x} \]

Find the sum of all possible real values of \(x\) that satisfy the equation above.

**Hint**: \(x+y\geq 2\sqrt{xy} \).

×

Problem Loading...

Note Loading...

Set Loading...