Barrows Sum

Calculus Level 4

\[ \large \lim_{n\to\infty} \frac{ \displaystyle \sum_{i=0}^n \sqrt i}{(n+1)\sqrt n} \]

Suppose the limit above equals to \(\frac ab\) where \(a,b\) are coprime positive integers, find \(a+b\).

×

Problem Loading...

Note Loading...

Set Loading...