'Bashing' Telescope.

Algebra Level 5

\[\large \displaystyle \sum_{i=2}^{10} \dfrac{4i^5 + 10i^4 + 16i^3 + 14i^2-4i - 4}{i^8 + 4i^7 + 2i^6 - 8i^5 - 7i^4 + 4i^3 + 4i^2} \]

If the above summation can be simplified to \( \dfrac{a}{b}\) where \(a\) and \(b\) are coprime positive integers . What is the value of \(a+b\)?

×

Problem Loading...

Note Loading...

Set Loading...