Forgot password? New user? Sign up

Existing user? Log in

Let $a$, $b$, and $c$ be non-zero real numbers such that $\begin{cases} \begin{aligned} a^2+a&=b^2 \\b^2+b&=c^2 \\c^2+c&=a^2. \end{aligned} \end{cases}$ Find the value of $(a-b)(b-c)(c-a)$.

Problem Loading...

Note Loading...

Set Loading...