# Beauty lies in the eyes of beholder!

**Calculus**Level 5

\[\sum_{n=1}^{\infty}\left(\sum_{k_{1}=1}^{n}\frac{1}{k_{1}}\right)\left(\sum_{k_{2}=1}^{\infty}\frac{1}{(n+k_{2})^3}\right)=2\zeta{(a) }-\zeta{(a-1) }\]

Find \(2a\).

\[\sum_{n=1}^{\infty}\left(\sum_{k_{1}=1}^{n}\frac{1}{k_{1}}\right)\left(\sum_{k_{2}=1}^{\infty}\frac{1}{(n+k_{2})^3}\right)=2\zeta{(a) }-\zeta{(a-1) }\]

Find \(2a\).

×

Problem Loading...

Note Loading...

Set Loading...