$\large \displaystyle \sum_{n=2}^{2017} \dfrac {\frac{1}{n}}{\displaystyle \prod_{k=2}^{n} \left( 1+\frac{1}{k} \right)}$

The above expression can be expressed in the form $\dfrac {a}{b}$, where $a$ and $b$ are coprime positive integers. Find $a+b$.

×

Problem Loading...

Note Loading...

Set Loading...