\[\displaystyle \Large \sum_{0 \le i < j \le n} \binom{n}{i} + \binom{n}{j}\]

The sum is taken over all ordered pairs \((i,j)\) satisfying \(0 \le i < j \le n\). If \(n = 12\), find the value of the above sum.

×

Problem Loading...

Note Loading...

Set Loading...