Given that
\[
\int_0^\infty \sqrt{\frac{\theta}{2\pi x^3}}\exp\left(-\frac{\theta (x-\mu)^2}{2\mu^2 x}\right)\,dx=1,
\]
for \(\,\mu>0\,\) and \(\,\theta>0\,\). Then determine
\[
\int_0^\infty \sqrt{\frac{x}{\pi}}\exp\left(1-\frac{x}{4}-\frac{1}{x}\right)\,dx.
\]

×

Problem Loading...

Note Loading...

Set Loading...