Forgot password? New user? Sign up
Existing user? Log in
∫7x13+5x15(x7+x2+1)3dx=1a⋅xb(x7+x2+1)c\displaystyle \int\frac{7x^{13}+5x^{15}}{\left(x^7+x^2+1\right)^3}dx = \frac{1}{a}\cdot \frac{x^{b}}{\left(x^7+x^2+1\right)^c}∫(x7+x2+1)37x13+5x15dx=a1⋅(x7+x2+1)cxb
Given that the indefinite integral above is true, what's the value of a+b+c, a+b+c, a+b+c, where a,b, and ca,b,\text{ and }ca,b, and c are positive integers?
Problem Loading...
Note Loading...
Set Loading...