\[\large \int _{-\infty} ^\infty \frac {e^{(1998+2016i)x}}{\cosh (x)} \, dx = \frac \pi { \cosh ((ai-b) \pi)} \]

If the equation above holds true for real \(a\) and \(b\), find \(a+b\).

\(\)

**Notation**: \(i=\sqrt{-1}\) denotes the imaginary unit.

×

Problem Loading...

Note Loading...

Set Loading...