Let \(h(x)= (f \circ g)(x) +K \), where \(K\) is any constant.

If \( \dfrac{d}{dx} h(x)= \dfrac{-\sin x}{\cos^2{(\cos {x})}} \), then compute the value of \(j(0)\), where \[ j(x)=\int^{f(x)}_{g(x)} \dfrac{f(t)}{g(t)} \,dt \] and, \(f\) and \(g\) are trigonometric functions. If \(j(0)\) is of the form \(a-\sec{b}\), then give your answer as \(a+b\).

×

Problem Loading...

Note Loading...

Set Loading...