Forgot password? New user? Sign up
Existing user? Log in
L=limx→0((1+x)1/xe)1sinx \large L = \lim_{x\to0} \left(\frac{(1+x)^{1/x}}{e}\right)^{\dfrac{1}{\sin{x}}} L=x→0lim(e(1+x)1/x)sinx1
If L=ekL = e^k L=ek, where kk k is a real number, find the value of kkk.
Clarification: eee denotes Euler's number, e≈2.71828e \approx 2.71828e≈2.71828.
Problem Loading...
Note Loading...
Set Loading...