Forgot password? New user? Sign up
Existing user? Log in
232=23⋅23…①232−232=23⋅23−23⋅23…②(23+23)(23−23)=23(23−23)…③(23+23)⋅0=23⋅0…④23=46⇒1=2…⑤ \begin{aligned} 23^2=&23 \cdot 23 \quad & \ldots ① \\ 23^2-23^2=&23 \cdot 23-23 \cdot 23 \quad & \ldots ② \\ (23+23)(23-23)=& 23(23-23) \quad & \ldots ③ \\ (23+23)\cdot \cancel{0}=&23\cdot \cancel{0} \quad & \ldots ④ \\ 23=&46 ⇒ 1=2 \quad & \ldots ⑤\end{aligned} 232=232−232=(23+23)(23−23)=(23+23)⋅0=23=23⋅2323⋅23−23⋅2323(23−23)23⋅046⇒1=2…①…②…③…④…⑤
The above equations lead us to a conclusion that 1=2 1 = 2 1=2. Then which of these steps contains the flaw.
Try more problems here.
Problem Loading...
Note Loading...
Set Loading...