Find $\displaystyle\sum_{k=0}^{2014}(-1)^k\left(\begin{matrix}2014\\k\end{matrix}\right)$, where $\displaystyle\left(\begin{matrix}n\\r\end{matrix}\right)=\frac{n!}{(n-r)!r!}$ denotes combination.

For those of you who do not comprehend $\sum$, find $\left(\begin{matrix}2014\\0\end{matrix}\right)-\left(\begin{matrix}2014\\1\end{matrix}\right)+\left(\begin{matrix}2014\\2\end{matrix}\right)-\left(\begin{matrix}2014\\3\end{matrix}\right)+\cdots-\left(\begin{matrix}2014\\2013\end{matrix}\right)+\left(\begin{matrix}2014\\2014\end{matrix}\right)$

×

Problem Loading...

Note Loading...

Set Loading...