In a cryptogram, each symbol represents a distinct, non-negative, single digit, and all leading digits are non-zero.

Solve the cryptogram below, and submit your answer as the 4-digit integer \(\overline{VIER}. \) \[{\begin{array}{cccccc} && &\color{red}E&\color{orange}I&\color{green}N&\color{blue}S \\ && &\color{red}E&\color{orange}I&\color{green}N&\color{blue}S \\ && &\color{red}E&\color{orange}I&\color{green}N&\color{blue}S \\ +&& &\color{red}E&\color{orange}I&\color{green}N&\color{blue}S \\ \hline && &\color{violet}V&\color{orange}I&\color{red}E&\color{pink}R \end{array}}\]

**Note:** In German, eins means one and vier means four. So this cryptogram is "doubly true": 1+1+1+1=4.

*This problem is a part of <Christmas Streak 2017> series.*

×

Problem Loading...

Note Loading...

Set Loading...