Circumscribes many notions.

Let \( \left[ \begin{matrix} 2 & 1 \\ 1 & 0 \end{matrix} \right]^n=\left( a_{ij}(n) \right) \)

If \( \left( \displaystyle \lim_{n \to \infty} \dfrac{a_{12}(n)}{a_{22}(n)} \right)^2=\sqrt{A}+\sqrt{B} \quad \quad \left( A,B \in \mathbb{N}\right) \)

then find the value of \( A+B \).

Notation: \(a_{ij}(n)\) denotes the element in the \(i^{\text{th}}\) row and \(j^{\text{th}}\) column of matrix \(A\).

Practice the set Target JEE_Advanced - 2015 and boost up your preparation.
×

Problem Loading...

Note Loading...

Set Loading...