# collinearity

**Algebra**Level 4

if \(\alpha ,\beta ,\gamma ,\delta\) are distinct and different from 2 and the points\( \left( \frac { { \alpha }^{ 4 } }{ \alpha -2 } ,\frac { { \alpha }^{ 3 }-5 }{ \alpha -2 } \right) ,\quad \left( \frac { { \beta }^{ 4 } }{ \beta -2 } ,\frac { { \beta }^{ 3 }-5 }{ \beta -2 } \right) ,\quad \left( \frac { { \gamma }^{ 4 } }{ \gamma -2 } ,\frac { { \gamma }^{ 3 }-5 }{ \gamma -2 } \right) ,\quad \left( \frac { { \delta }^{ 4 } }{ \delta -2 } ,\frac { { \delta }^{ 3 }-5 }{ \delta -2 } \right)\) are collinear

then \(\alpha \beta \gamma \delta\) =