Forgot password? New user? Sign up
Existing user? Log in
The equation x10+(13x−1)10=0x^{10}+(13x-1)^{10}=0x10+(13x−1)10=0 has 101010 complex roots: r1,r1‾,r2,r2‾,r3,r3‾,r4,r4‾,r5,r5‾,r_1, \overline{r_1}, r_2, \overline{r_2}, r_3, \overline{r_3}, r_4, \overline{r_4}, r_5, \overline{r_5},r1,r1,r2,r2,r3,r3,r4,r4,r5,r5, where the bar denotes complex conjugation. Evaluate the expression below.
1r1r1‾+1r2r2‾+1r3r3‾+1r4r4‾+1r5r5‾\dfrac 1{r_1\overline{r_1}}+\dfrac 1{r_2\overline{r_2}}+\dfrac 1{r_3\overline{r_3}}+\dfrac 1{r_4\overline{r_4}}+\dfrac 1{r_5\overline{r_5}} r1r11+r2r21+r3r31+r4r41+r5r51
Problem Loading...
Note Loading...
Set Loading...