# Complicated Complex Fractions

**Algebra**Level 5

Let \(x, y\) and \(z\) be complex numbers such that

\[x + y + z = 2\]

\[x^2 + y^2 + z^2 = 3\]

\[xyz = 4\].

Evaluate

\[|\frac {1}{xy + z - 1} + \frac {1}{yz + x - 1} + \frac {1}{zx + y - 1}|\]

Let \(x, y\) and \(z\) be complex numbers such that

\[x + y + z = 2\]

\[x^2 + y^2 + z^2 = 3\]

\[xyz = 4\].

Evaluate

\[|\frac {1}{xy + z - 1} + \frac {1}{yz + x - 1} + \frac {1}{zx + y - 1}|\]

×

Problem Loading...

Note Loading...

Set Loading...