Forgot password? New user? Sign up
Existing user? Log in
limx→∞(x+x−x),limx→∞(x+x+x−x) \large \lim_{x\to\infty}\left( \sqrt{x +\sqrt{x}} - \sqrt{x}\right), \quad \lim_{x\to\infty}\left( \sqrt{x +\sqrt{x +\sqrt{x}}} - \sqrt{x}\right) x→∞lim(x+x−x),x→∞lim⎝⎛x+x+x−x⎠⎞
It is possible to show that both the limits above are equal to 12. \frac12.21.
Is it true that the limit below is also equal to 12? \frac12?21?
limx→∞(x+x+x+x−x) \lim_{x\to\infty}\left(\sqrt{x+ \sqrt{x +\sqrt{x +\sqrt{x}}}} - \sqrt{x}\right) x→∞lim⎝⎛x+x+x+x−x⎠⎞
Problem Loading...
Note Loading...
Set Loading...