Consistent last digit?

The last digit of 333^3 is 7.
The last digit of 3333^{3^3} is 7.
The last digit of 33333^{3^{3^3}} is 7.

The 3 statements above are all true. Is it true that for all integers n2n\geq2, 33333n number of 3’s\underbrace{3^{3^{3^{3^{\cdot^{\cdot^3}}}}}}_{n\text{ number of 3's}} has a last digit of 7?

×

Problem Loading...

Note Loading...

Set Loading...