Forgot password? New user? Sign up
Existing user? Log in
Let f:R→Rf:\mathbb{R}\rightarrow\mathbb{R}f:R→R satisfy f(x+y)=f(x)+f(y) ∀ x,y∈Rf(x+y)=f(x)+f(y)\ \forall\ x,y\in\mathbb{R}f(x+y)=f(x)+f(y) ∀ x,y∈R. If fff is continuous at x=0x=0x=0, find the number of points of discontinuity of function fff.
Problem Loading...
Note Loading...
Set Loading...