\[ \large I(n) =\int_0^1 \dfrac{\ln(1-t)}{(1-t)^n} \, dt \qquad \qquad G(n) = \int_0^1 \dfrac{\ln(1+t)}{(1+t)^n} \, dt \]

Let \(I(n) \) and \(G(n) \) be functions as shown above. Which of the following statements is/are true?

**(A)**: \(G(n) \) is convergent for all \(n\).

**(B)**: I(n) is divergent for n>1

**(C)**: \(I(n) + G(n) \) is convergent for all \(n\) < 1.

**(D)**: \(\displaystyle e^2 = \left( \left( \sum_{r=0}^\infty \frac1{I^{(r)}(2)} \right)+ 1 \right)^{-1} \), where \(I^{(r)} (\cdot) \) denotes the \(r^\text{th} \) derivative of \(I\).

**(E)**: \(I(n) : [1,\infty) \to \mathbb R \) is a bijective function.

×

Problem Loading...

Note Loading...

Set Loading...