What is the smallest real number \(n\), such that for any triangle of sides \(a, b, c \),
\[\frac{\sqrt{b+c-a}}{\sqrt{b}+\sqrt{c}-\sqrt{a}}+\frac{\sqrt{c+a-b}}{\sqrt{c}+\sqrt{a}-\sqrt{b}}+\frac{\sqrt{a+b-c}}{\sqrt{a}+\sqrt{b}-\sqrt{c}} \leq{n}\]
Problem Loading...
Note Loading...
Set Loading...