$\left \lfloor \dfrac{1^2}{2017} \right \rfloor , \, \left \lfloor \dfrac{2^2}{2017} \right \rfloor , \, \left \lfloor \dfrac{3^2}{2017} \right \rfloor , \, \ldots , \, \left \lfloor \dfrac{2017^2}{2017} \right \rfloor$

How many distinct numbers are there in the list of numbers above?

$$

**Notation:** $\lfloor \cdot \rfloor$ denotes the floor function.

×

Problem Loading...

Note Loading...

Set Loading...