\[\displaystyle \int_0^{\pi/6} {\sum_{n=1}^{\infty}{\left(\cos(x) \cos\left(x + \frac{\pi}{n}\right) \cos\left(x + \frac{2\pi}{n}\right) \cdots \cos\left(x + \frac{(n-1)\pi}{n}\right)\right)}\, dx} = \ln\left(\dfrac{a}{b}\right)\]

Find \(ab\).

**Details and Assumptions**

\(a,b\) are coprime positive integers.

×

Problem Loading...

Note Loading...

Set Loading...