Forgot password? New user? Sign up
Existing user? Log in
Given xk,yk,zk>0x_k, y_k, z_k > 0 xk,yk,zk>0 for all kkk satisfy the three summations:
∑k=12015xk=50∑k=12015yk=169∑k=12015zk=961 \begin{aligned} \displaystyle \sum_{k=1}^{2015} x_k & = & 50 \\ \displaystyle \sum_{k=1}^{2015} y_k & = & 169 \\ \displaystyle \sum_{k=1}^{2015} z_k & = & 961 \\ \end{aligned} k=1∑2015xkk=1∑2015ykk=1∑2015zk===50169961
What is the minimum value of ∑k=12015(xkykzk) \displaystyle \sum_{k=1}^{2015} \left ( x_k y_k z_k \right ) k=1∑2015(xkykzk)?
Problem Loading...
Note Loading...
Set Loading...