Define \(f(x)=\displaystyle\sum_{k=1}^{2016} \dfrac{x^{k+1}}{k+1}\) . If \(f^{(2016)} (100)\) can be evaluated as \(a\times b!\) where \(b\) is maximum, find \(a+b\) .

**Bonus:** If \(f(x)=\displaystyle\sum_{k=1}^{n} \dfrac{x^{k+1}}{k+1}\) , find \(f^{(n)} (x)\) .

×

Problem Loading...

Note Loading...

Set Loading...