Let \(a, b, c\) be distinct positive integers such that \(a+b+c \leq 3000000\). Find the maximum value of \(\text{gcd}(ab+1, bc+1, ca+1)\).

\(\)

**Notation:** \(\gcd(\cdot) \) denotes the greatest common divisor function.

×

Problem Loading...

Note Loading...

Set Loading...