Forgot password? New user? Sign up
Existing user? Log in
Suppose A=dydxA=\frac { dy }{ dx } A=dxdy of x2+y2=4{ x }^{ 2 }+{ y }^{ 2 }=4x2+y2=4 at (2,2),B=dydx\left( \sqrt { 2 } ,\sqrt { 2 } \right) ,B=\frac { dy }{ dx } (2,2),B=dxdy of siny+sinx=sinx.siny\sin { y } +\sin { x } =\sin { x } .\sin { y } siny+sinx=sinx.siny at (π,π)\left( \pi ,\pi \right) (π,π) and C=dydxC=\frac { dy }{ dx } C=dxdy of 2exy+exey−ex−ey=exy+1{ 2e }^{ xy }+{ e }^{ x }{ e }^{ y }-{ e }^{ x }-{ e }^{ y }={ e }^{ xy+1 }2exy+exey−ex−ey=exy+1 at (1,1)\left( 1,1 \right) (1,1) , then (A+B+C)(A+B+C)(A+B+C) has a value equal to
For set , click here
Problem Loading...
Note Loading...
Set Loading...