Forgot password? New user? Sign up
Existing user? Log in
f(x)=(cos−1x2)2+πsin−1x2−(sin−1x2)2+π212(x2+6x+8) \large \displaystyle f(x)=\left(\cos^{-1}\dfrac{x}{2}\right)^2+\pi \sin^{-1}\dfrac{x}{2}-\left(\sin^{-1}\dfrac{x}{2}\right)^2+\dfrac{\pi^2}{12}(x^2+6 x+8) f(x)=(cos−12x)2+πsin−12x−(sin−12x)2+12π2(x2+6x+8)
If the range of f(x)f(x)f(x) above is [aπ2,bπ2][a\pi^2,b \pi^2][aπ2,bπ2], what is the value of 2(a+b)2(a+b)2(a+b)?
Problem Loading...
Note Loading...
Set Loading...