# Divisible by 6

**Number Theory**Level 4

Let \(p,q\) be two prime numbers such that \[6\mid pq+(p+1)(q+1)(p+q)\]

If \((p,q)=(p_1,q_1),(p_2,q_2),\ldots, (p_n,q_n)\) are all solutions for the ordered pair \((p,q)\) then find \[\sum_{i=1}^np_i+q_i.\]

Let \(p,q\) be two prime numbers such that \[6\mid pq+(p+1)(q+1)(p+q)\]

If \((p,q)=(p_1,q_1),(p_2,q_2),\ldots, (p_n,q_n)\) are all solutions for the ordered pair \((p,q)\) then find \[\sum_{i=1}^np_i+q_i.\]

×

Problem Loading...

Note Loading...

Set Loading...