Divisible by this year? v2015 (Part 1: Happy New Year!)

Let a1a_{1}, a2a_{2}, a3a_{3}, \dots, a2013a_{2013}, and a2014a_{2014} be 20142014 positive distinct prime integers where ai<ai+1a_i < a_{i + 1} for all positive integer i<2014i < 2014

Find the least possible value of a1a_1 if

a12+a22+a32++a20132+a20142{ { a }_{1 } }^{ 2}+ { { a }_{2 } }^{ 2}+{ { a }_{3 } }^{ 2} + \dots + { { a }_{2013 } }^{ 2}+ { { a }_{2014 } }^{ 2}

is divisible by 20152015

Please show your solutions! Thanks!!!

You may like this

×

Problem Loading...

Note Loading...

Set Loading...