Divisors of a0b

Algebra Level 5

Find the sum of all 2 digit numbers \(N=\overline{ab}\), where \(a \neq 0\), such that \( N\) divides \(\overline{a0b} \).

Details and assumptions

\( \overline{abc}\) means \( 100a + 10b + 1c\), as opposed to \( a \times b \times c\). As an explicit example, for \(a=2, b=3, c=4\), \(\overline{abc} = 234\) and not \( 2 \times 3 \times 4 = 24\).

×

Problem Loading...

Note Loading...

Set Loading...