Forgot password? New user? Sign up
Existing user? Log in
{a+1b=73b+1c=4c+1a=1\large{\begin{cases} a + \frac 1b = \frac73 \\ b + \frac1c = 4 \\ c + \frac1a = 1 \end{cases}}⎩⎪⎪⎨⎪⎪⎧a+b1=37b+c1=4c+a1=1
If a,b,a,b,a,b, and ccc are real numbers that satisfy the system of equations above, find the value of abcabcabc.
Problem Loading...
Note Loading...
Set Loading...