\[\frac{b+c}{b^2+c^2+2(ab+bc+ac)}+\frac{a+c}{a^2+c^2+2(ab+bc+ac)}+\frac{a+b}{a^2+b^2+2(ab+bc+ac)}\]

Given that \(a,b\) and \(c\) are positive reals satisfying \(a^2b^2+b^2c^2+a^2c^2\leq666a^2b^2c^2\). Let \(P \) denote the maximum value of the expression above.

Find \( 10P\), round to the nearest integer.

Part of the set

×

Problem Loading...

Note Loading...

Set Loading...