# Do the bare minimum

**Computer Science**Level 5

Any number can be represented as a sum of square of numbers, for example \(9\) can be represented as \(3^{2}\) or \(2^{2}+2^{2}+1^{2}\) or even \(\underset { 9\quad times }{ \underbrace { { 1 }^{ 2 }+{ 1 }^{ 2 }+\cdots +{ 1 }^{ 2 } } } \).

Let \(\varsigma (n)\) be the minimum squares of numbers needed in the representation of \(n\). What is the value of.. \[\large \sum _{ i=2 }^{ 2015 }{ \varsigma (i) } \]

**Details and assumptions**

As explicit examples:

\(\varsigma (100)=1 \longrightarrow 10^{2} \)

\(\varsigma (120)=3 \longrightarrow 10^{2}+4^{2}+2^{2} \)

**Your answer seems reasonable.**Find out if you're right!

**That seems reasonable.**Find out if you're right!

Already have an account? Log in here.