Which pair(s) of functions is/are not identical?

(a) $\log_ex^3$ **&** $3.\log_ex$

(b) $\log_ee^x$ **&** $e^{\log_ex}$

(c) $\sin(\sin^{-1}x)$ **&** $\sin^{-1}(\sin x)$

(d) $\sin^2x+\cos^2x$ **&** $\sec^2x-\tan^2x$

Note : Two functions are called identical if they have same domain and same range.