Find the sum of all the ordered pairs \((a,b)\) of positive integers that satisfy

\[\begin{cases} b^2 \mid \dfrac{8a^2-14b-56a+2ab}{a-7} \\ a+b \mid \dfrac{b^2}{2}-2a-b \\ \dfrac{16ab+6b+4b^2+24a}{2b+3} \mid b^2 \end{cases}\]

×

Problem Loading...

Note Loading...

Set Loading...