# Dominion starting hand

**Discrete Mathematics**Level 3

An opening is the number of Coppers in hand for the first two turns. For the above example, the opening is called a 4/3 opening: 4 Coppers are drawn in the first turn, then 3 Coppers in the second. A 3/4 opening is functionally identical to 4/3, and likewise 2/5 is identical to 5/2. It can also be easily shown that there is no other kind of opening, so there are only two distinct openings: 5/2 or 4/3. Which opening is obtained depends wholly on the luck of the first shuffle.

If the probability of getting a 5/2 opening is \(\frac{a}{b}\) where \(a,b\) are positive integers that are relatively prime, determine the value of \(a+b\).

**Assumption:** Count both 5/2 and 2/5 opening, since they are identical as stated.