Don't run out of patience

Algebra Level 5

r=1n1r(r+1)(r+2)(r+3)=1a1b(n+1)+1c(n+2)1d(n+3)\sum _{r=1} ^n \frac{1}{r(r+1)(r+2)(r+3)} = \dfrac{1}{a} - \dfrac{1}{b(n+1)}+ \dfrac{1}{c(n+2)}- \dfrac{1}{d(n+3)}

If the equation above holds true for constants aa, bb, cc and dd, find a+b+c+da+b+c+d.

×

Problem Loading...

Note Loading...

Set Loading...